Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Streptococcus sinensis is a recently identified member of the Mitis group of streptococci. This species has been associated with infective endocarditis; however its mechanisms of pathogenesis and virulence are not fully understood. This study aimed to investigate the influence of the competence-stimulating peptide (CSP) and the competence regulon quorum-sensing circuitry (ComABCDE) on subsequent gene transcription and expression, as well as resultant phenotypes. In this study we confirmed the native CSP identity, ascertained when endogenous CSP was produced and completed a transcriptome-wide analysis of all genes following CSP exposure. RNA sequencing analysis revealed the upregulation of genes known to be associated with competence, biofilm formation and virulence. As such, a variety of phenotypic assays were utilized to assess the correlation between increased mRNA expression and potential phenotype response, ultimately gaining insight into the effects of CSP on both gene expression and developed phenotypes. The results indicated that the addition of exogenous CSP aided in competence development and successful transformation, yielding an average transformation efficiency comparable to that of other Mitis group streptococci. Additional studies are needed to further delineate the effects of CSP exposure on biofilm formation and virulence. Overall, this study provides novel information regarding S. sinensis and provides a substantial foundation on which this species and its role in disease pathogenesis can be further investigated.more » « less
-
Kuo, Chih-Horng (Ed.)Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises ( Gopherus agassizii ). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M . agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M . agassizii strain PS6 T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6 T and 723, we did not detect any SNP between PS6 T and our eight samples. Our whole genome analyses reveal that M . agassizii strain PS6 T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises.more » « less
-
null (Ed.)Abstract Key message Arabidopsis pollen transcriptome analysis revealed new intergenic transcripts of unknown function, many of which are long non-coding RNAs, that may function in pollen-specific processes, including the heat stress response. Abstract The male gametophyte is the most heat sensitive of all plant tissues. In recent years, long noncoding RNAs (lncRNAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including response to stress. While examining RNAseq datasets of developing and germinating Arabidopsis thaliana pollen exposed to heat stress (HS), we identified 66 novel and 246 recently annotated intergenic expressed loci (XLOCs) of unknown function, with the majority encoding lncRNAs. Comparison with HS in cauline leaves and other RNAseq experiments indicated that 74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed that 96% of the genes evolved recently in Brassicaceae . We found that 50 genes are putative targets of microRNAs and that 30% of the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these ORFs are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional and play a significant role in pollen biology, including the HS response.more » « less
An official website of the United States government
